Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Rep ; 43(6): 142, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744747

RESUMEN

KEY MESSAGE: 111 PHD genes were newly identified in rye genome and ScPHD5's role in regulating cold tolerance and flowering time was suggested. Plant homeodomain (PHD)-finger proteins regulate the physical properties of chromatin and control plant development and stress tolerance. Although rye (Secale cereale L.) is a major winter crop, PHD-finger proteins in rye have not been studied. Here, we identified 111 PHD genes in the rye genome that exhibited diverse gene and protein sequence structures. Phylogenetic tree analysis revealed that PHDs were genetically close in monocots and diverged from those in dicots. Duplication and synteny analyses demonstrated that ScPHDs have undergone several duplications during evolution and that high synteny is conserved among the Triticeae species. Tissue-specific and abiotic stress-responsive gene expression analyses indicated that ScPHDs were highly expressed in spikelets and developing seeds and were responsive to cold and drought stress. One of these genes, ScPHD5, was selected for further functional characterization. ScPHD5 was highly expressed in the spike tissues and was localized in the nuclei of rye protoplasts and tobacco leaves. ScPHD5-overexpressing Brachypodium was more tolerant to freezing stress than wild-type (WT), with increased CBF and COR gene expression. Additionally, these transgenic plants displayed an extremely early flowering phenotype that flowered more than two weeks earlier than the WT, and vernalization genes, rather than photoperiod genes, were increased in the WT. RNA-seq analysis revealed that diverse stress response genes, including HSPs, HSFs, LEAs, and MADS-box genes, were also upregulated in transgenic plants. Our study will help elucidate the roles of PHD genes in plant development and abiotic stress tolerance in rye.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Secale , Flores/genética , Flores/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secale/genética , Secale/fisiología , Frío , Plantas Modificadas Genéticamente/genética , Estrés Fisiológico/genética , Genoma de Planta/genética , Familia de Multigenes , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Dedos de Zinc PHD/genética
2.
J Plant Physiol ; 296: 154233, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554674

RESUMEN

Freezing temperature during overwintering often kills plants; plants have thus, developed a defense mechanism called 'cold acclimation', in which a number of genes are involved in increasing cell protection and gene expression. Mitogen-activated protein kinase (MAPK) controls proteins' activities by phosphorylation and is involved in numerous metabolic pathways. In this study, we identified the protein interaction between TaMAPK3 and the proteins in the cold response pathway, ICE41, ICE87, and CBFIVd-D9. The subcellular localization and bimolecular fluorescence complement (BiFC) assays revealed that these proteins interact in the nucleus or in the plasma membrane. Furthermore, MAPK3-mediated phosphorylation of ICE41, ICE87, and CBFIVd-D9 was verified using an in vitro phosphorylation assay. TaMAPK3-overexpressing transgenic Brachypodium showed a lower survival rate upon freezing stress and lower proline content during cold acclimation, compared to wild-type plants. Furthermore, cold response gene expression analysis revealed that the expression of these genes was suppressed in the transgenic lines under cold treatment. It was further elucidated that MAPK3 mediates the degradation of ICE and CBF proteins, which implies the negative impact of MAPK3 on the freezing tolerance of plants. This study will help to elucidate the molecular mechanisms of cold tolerance and the activity of MAPK3 in wheat.


Asunto(s)
Proteínas de Arabidopsis , Triticum , Congelación , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frío , Fosforilación , Regulación de la Expresión Génica de las Plantas , Aclimatación/genética , Proteínas de Arabidopsis/metabolismo
3.
BMC Plant Biol ; 23(1): 106, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36814195

RESUMEN

BACKGROUND: Lettuce is one of the most extensively farmed vegetables in the world, and it prefers cool growing conditions. High temperatures promote premature bolt formation, reducing quality and yield. The gibberellic acid-stimulated Arabidopsis (GASA) family genes play critical roles in plant growth, development, and stress responses. However, the biological functions of GASA proteins in lettuce have yet to be thoroughly investigated. RESULTS: Using genome-wide analysis, 20 GASAs were identified in lettuce including, three groups of LsGASA proteins based on the phylogenetic analysis. Except for one, all GASA proteins included a conserved GASA domain with 12 cysteine residues. Cis-element analysis showed that LsGASAs were closely associated with light, phytohormones, and stress resistance. Five segmental and three tandem duplication events were observed in the LsGASA family based on duplication analysis. GASA synteny analysis among lettuce, Arabidopsis, tobacco, and rice revealed that LsGASA5 is highly collinear with all species. Six of the 20 LsGASA showed increased expression patterns at specific time points in the shoot apical meristem when subjected to heat stress. According to gene expression analysis, the majority of GASA were highly expressed in flowers compared to other organs, and six GASA exhibited highly increased expression levels in response to NaCl, abscisic acid, and gibberellin treatment. Furthermore, LsGASA proteins are predominantly found in the plasma membrane and/or the cytosol. CONCLUSIONS: This study provides a comprehensive characterization of LsGASA genes for their diversity and biological functions. Moreover, our results will be useful for further studies on the function of lettuce GASA in abiotic stress- and heat-induced bolting signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Giberelinas/metabolismo , Lactuca/genética , Proteínas de Plantas/genética , Filogenia , Proteínas de Arabidopsis/genética , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes
4.
Evol Bioinform Online ; 18: 11769343221093341, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444404

RESUMEN

Plants accumulate key metabolites as a response of biotic/abiotic stress conditions. In seed coats, anthocyanins, carotenoids, and chlorophylls can be found. They have been associated as important antioxidants that affect germination. In wheat, anthocyanins can impart the seed coat color which have been recognized as health-promoting nutrients. Transcription factors act as master regulators of cellular processes. Transcription complexes such as MYB-bHLH-WD40 (MBW) regulate the expression of multiple target genes in various plant species. In this study, the spatiotemporal accumulation of seed coat pigments in different developmental stages (10, 20, 30, and 40 days after pollination) was analyzed using cryo-cuts. Moreover, the accumulation of phenolic, anthocyanin, and chlorophyll contents was quantified, and the expression of flavonoid biosynthetic genes was evaluated. Finally, transcriptome analysis was performed to analyze putative MYB genes related to seed coat color, followed by further characterization of putative genes. TaTCL2, an MYB gene, was cloned and sequenced. It was determined that TaTCL2 contains a SANT domain, which is often present in proteins participating in the response to anthocyanin accumulation. Moreover, TaTCL2 transcript levels were shown to be influenced by anthocyanin accumulation during grain development. Interaction network analysis showed interactions with GL2 (HD-ZIP IV), EGL3 (bHLH), and TTG1 (WD40). The findings of this study elucidate the mechanisms underlying color formation in Triticum aestivum L. seed coats.

5.
Physiol Plant ; 174(2): e13677, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35316541

RESUMEN

In wheat (Triticum aestivum L.), the floret development stage is an important step in determining grain yield per spike; however, the molecular mechanisms underlying floret development remain unclear. In this study, we elucidated the role of TaF-box2, a member of the F-box-containing E3 ubiquitin protein ligases, which is involved in floret development and anthesis of wheat. TaF-box2 was transiently expressed in the plasma membrane and cytoplasm of both tobacco and wheat. We also found that the SCFF-box2 (Skp1-Cul1-Rbx1-TaF-box2) ubiquitin ligase complex mediated self-ubiquitination activity. Transgenic Arabidopsis plants that constitutively overexpressed TaF-box2 showed markedly greater hypocotyl and root length than wild-type plants, and produced early flowering phenotypes. Flowering-related genes were significantly upregulated in TaF-box2-overexpressing Arabidopsis plants. Further protein interaction analyses such as yeast two-hybrid, in vitro pull-down, and bimolecular fluorescence complementation assays confirmed that TaF-box2 physically interacted with TaCYCL1 (Triticum aestivum cyclin-L1-1). Ubiquitination and degradation assays demonstrated that TaCYCL1 was ubiquitinated by SCFF-box2 and degraded through the 26S proteasome complex. The physiological functions of the TaF-box2 protein remain unclear; however, we discuss several potential routes of involvement in various physiological mechanisms which counteract flowering in transgenic Arabidopsis plants.


Asunto(s)
Arabidopsis , Proteínas F-Box , Arabidopsis/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Triticum/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
6.
BMC Plant Biol ; 21(1): 252, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078280

RESUMEN

BACKGROUND: Flavonoids can protect plants against extreme temperatures and ROS due to their antioxidant activities. We found that deep-purple seed coat color was controlled by two gene interaction (12:3:1) from the cross between yellow and deep-purple seed coat colored inbreds. F2:3 seeds were grouped in 3 by seed coat color and germinated under chilling (4 °C) and non-acclimated conditions (18 °C) for a week, followed by normal conditions (18 °C) for three weeks and a subsequent chilling stress (4 °C) induction. We analyzed mean daily germination in each group. Additionally, to study the acclimation in relationship to the different seed coat colors on the germination ability and seedling performances under the cold temperatures, we measured the chlorophyll content, ROS scavenging activity, and expression levels of genes involved in ROS scavenging, flavonoid biosynthetic pathway, and cold response in seedlings. RESULTS: The results of seed color segregation between yellow and deep purple suggested a two-gene model. In the germination study, normal environmental conditions induced the germination of yellow-seed, while under chilling conditions, the germination ratio of deep purple-seed was higher than that of yellow-colored seeds. We also found that the darker seed coat colors were highly responsive to cold acclimation based on the ROS scavenging enzymes activity and gene expression of ROS scavenging enzymes, flavonoid biosynthetic pathway and cold responsive genes. CONCLUSIONS: We suggest that deep purple colored seed might be in a state of innate pre-acquired stress response state under normal conditions to counteract stresses in a more effective way. Whereas, after the acclimation, another stress should enhance the cold genes expression response, which might result in a more efficient chilling stress response in deep purple seed seedlings. Low temperature has a large impact on the yield of crops. Thus, understanding the benefit of seed coat color response to chilling stress and the identification of limiting factors are useful for developing breeding strategies in order to improve the yield of wheat under chilling stress.


Asunto(s)
Aclimatación , Frío , Germinación/fisiología , Plantones/fisiología , Semillas/fisiología , Triticum/fisiología , Antocianinas , Antioxidantes/metabolismo , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Fenoles , Pigmentos Biológicos , Especies Reactivas de Oxígeno
7.
Plant Physiol Biochem ; 159: 400-414, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33229191

RESUMEN

Abscisic acid-, stress-, and ripening-induced (ASR) proteins play an important role in protecting plants against adverse environmental conditions. Here, we identified 24 ASR genes in the wheat genome and analyzed their characteristics. Among these, five ASR genes highly induced by abscisic acid (ABA) and polyethylene glycol were cloned and further characterized. The TaASR genes were expressed in response to different abiotic stresses and ABA and were found to be localized in the nucleus and plasma membrane of transformed tobacco cells. Brachypodium distachyon transgenic plants overexpressing TaASR2D showed enhanced drought tolerance by regulating leaf transpiration. The expression levels of stress-related and ABA-responsive genes were higher in transgenic plants than in wild-type plants under drought stress conditions. Moreover, overexpression of TaASR2D increased the levels of both endogenous ABA and hydrogen peroxide in response to drought stress, and these plants showed hypersensitivity to exogenous ABA at the germination stage. Furthermore, plants overexpressing TaASR2D showed increased stomatal closure. Further analysis revealed that TaASR2D interacts with ABA biosynthesis and stress-related proteins in yeast and tobacco plants. Collectively, these findings indicate that TaASR2D plays an important role in the response of plants to drought stress by regulating the ABA biosynthesis pathway and redox homeostasis system.


Asunto(s)
Brachypodium , Sequías , Proteínas de Plantas , Plantas Modificadas Genéticamente , Estrés Fisiológico , Triticum , Ácido Abscísico , Brachypodium/genética , Brachypodium/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Triticum/genética
8.
Plant Cell Rep ; 38(9): 1109-1125, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31134348

RESUMEN

KEY MESSAGE: BdASR4 expression was up-regulated during abiotic stress and hormone treatments. Plants over-expressing BdASR4 improved drought tolerant. BdASR4 may regulate antioxidant activities and transcript levels of stress-related and abscisic acid-responsive genes. Abiotic stress conditions negatively affect plant growth and developmental processes, causing a reduction in crop productivity. The abscisic acid-, stress-, ripening-induced (ASR) proteins play important roles in the protection of plants from abiotic stress. Brachypodium distachyon L. is a well-studied monocot model plant. However, ASR proteins of Brachypodium have not been widely studied. In this study, five ASR genes of Brachypodium plant were cloned and characterized. The BdASR genes were expressed in response to various abiotic stresses and hormones. In particular, BdASR4 was shown to encode a protein containing a nuclear localization signal in its C-terminal region, which enabled protein localization in the nucleus. To further examine functions of BdASR4, transgenic Brachypodium plants harboring BdASR4 were generated. Over-expression of BdASR4 was associated with strong drought tolerance, and plants over-expressing BdASR4 preserved more water and displayed higher antioxidant enzyme activities than did the wild-type plants. The transcript levels of stress-responsive genes, reactive oxygen species scavenger-associated genes, and abscisic acid-responsive genes tended to be higher in transgenic plants than in WT plants. Moreover, plants over-expressing BdASR4 were hypersensitive to exogenous abscisic acid at the germination stage. Taken together, these findings suggest multiple roles for BdASR4 in the plant response to drought stress by regulating antioxidant enzymes and the transcription of stress- and abscisic acid-responsive genes.


Asunto(s)
Antioxidantes/metabolismo , Brachypodium/genética , Proteínas de Plantas/metabolismo , Agua/fisiología , Brachypodium/fisiología , Núcleo Celular/metabolismo , Sequías , Depuradores de Radicales Libres/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico
9.
Mol Biol Rep ; 43(12): 1435-1449, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27649990

RESUMEN

Gibberellic acid (GA) is involved in the regulation of plant growth and development. We defined GA-stimulated transcript (GAST) gene family and characterized its four members (TaGAST1, 2, 3, and 4) in wheat spikes. Triticum aestivum whole spikes were collected at ten developmental stages and dehulled spikelets were obtained at various days after flowering. Expression of TaGAST1, 2, 3, and 4 was analyzed using RT-PCR at inflorescence development stages, in different tissues, and after phytohormones application. To identify proteins interacting with TaGAST1, yeast two-hybridization was performed and BiFC analysis was used for verification. TaGAST1 was expressed at the inflorescence stage and only expressed in seedlings under abscisic acid (ABA) treatment after phytohormone treatment. TaGAST2 and TaGAST3 showed moderate expression in the spike, vigorous transcript accumulation in the seedling, and up-regulation by exogenous GA in early germination stages. TaGAST4 was predominantly expressed in the seedling. Wheat cyclophilin A-1 (TaCypA1), identified as a TaGAST1-interacting protein, showed opposite expression pattern in the developing spike to TaGAST1. TaCypA1 transcript was slightly up-regulated by GA, slightly down-regulated by paclobutrazol, and was maintained after ABA treatment. The interaction of TaGAST1 with TaCypA1 is targeted to the plasma membrane. TaGAST1 was specifically expressed in the wheat spike and was stimulated by exogenous GA treatment. TaGAST2 and TaGAST3 expression in germinating seeds and seedlings was higher than that in the spike stage. TaGAST4 was not expressed in all developmental stages. TaGAST1 and TaCypA1 might be expressed antagonistically during wheat spike development.


Asunto(s)
Germinación , Plantones/fisiología , Semillas/fisiología , Triticum/fisiología , Ácido Abscísico/farmacología , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Flores/efectos de los fármacos , Flores/fisiología , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Giberelinas/farmacología , Especificidad de Órganos , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/efectos de los fármacos , Semillas/efectos de los fármacos , Triticum/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...